Priestley Duality for Bilattices
نویسندگان
چکیده
We develop a Priestley-style duality theory for different classes of algebras having a bilattice reduct. A similar investigation has already been realized by B. Mobasher, D. Pigozzi, G. Slutzki and G. Voutsadakis, but only from an abstract category-theoretic point of view. In the present work we are instead interested in a concrete study of the topological spaces that correspond to bilattices and some related algebras that are obtained through expansions of the algebraic language.
منابع مشابه
Priestley Duality for Bilattices In memoriam
We develop a Priestley-style duality theory for different classes of algebras having a bilattice reduct. A similar investigation has already been realized by B. Mobasher, D. Pigozzi, G. Slutzki and G. Voutsadakis, but only from an abstract category-theoretic point of view. In the present work we are instead interested in a concrete study of the topological spaces that correspond to bilattices a...
متن کاملProduct representation for default bilattices: an application of natural duality theory
Bilattices (that is, sets with two lattice structures) provide an algebraic tool to model simultaneously the validity of, and knowledge about, sentences in an appropriate language. In particular, certain bilattices have been used to model situations in which information is prioritised and so can be viewed hierarchically. These default bilattices are not interlaced: the lattice operations of one...
متن کاملNatural Dualities Through Product Representations: Bilattices and Beyond
This paper focuses on natural dualities for varieties of bilatticebased algebras. Such varieties have been widely studied as semantic models in situations where information is incomplete or inconsistent. The most popular tool for studying bilattices-based algebras is product representation. The authors recently set up a widely applicable algebraic framework which enabled product representations...
متن کاملA Duality Theory for
Recent studies of the algebraic properties of bilattices have provided insight into their internal structures, and have led to practical results, especially in reducing the computational complexity of bilattice-based multi-valued logic programs. In this paper the representation theorem for interlaced bilattices with negation found in 18] and extended to arbitrary interlaced bilattices without n...
متن کاملFUZZY ORDERED SETS AND DUALITY FOR FINITE FUZZY DISTRIBUTIVE LATTICES
The starting point of this paper is given by Priestley’s papers, where a theory of representation of distributive lattices is presented. The purpose of this paper is to develop a representation theory of fuzzy distributive lattices in the finite case. In this way, some results of Priestley’s papers are extended. In the main theorem, we show that the category of finite fuzzy Priestley space...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Studia Logica
دوره 100 شماره
صفحات -
تاریخ انتشار 2012